Non-Standard and Numerov Finite Difference Schemes for Finite Difference Time Domain Method to Solve One- Dimensional Schrödinger Equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pentadiagonal alternating-direction-implicit finite-difference time-domain method for two-dimensional Schrödinger equation

In this paper, we have proposed a pentadiagonal alternating-direction-implicit (Penta-ADI) finite-difference time-domain (FDTD) method for the two-dimensional Schrödinger equation. Through the separation of complex wave function into real and imaginary parts, a pentadiagonal system of equations for the ADI method is obtained, which results in our Penta-ADI method. The Penta-ADI method is furthe...

متن کامل

Nonstandard finite difference schemes for differential equations

In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...

متن کامل

Non Standard Finite Difference Method for Quadratic Riccati Differential Equation

In this paper, we proposed an unconditionally stable NonStandard Finite Difference (NSFD) scheme to solve nonlinear Riccati differential equation. The accuracy and efficiency of the proposed scheme is verified by comparing the results with other numerical techniques such as Euler and RK-4 and semi analytical technique DTM. The obtained results show that the performance of NSFD scheme is more ac...

متن کامل

Finite difference time domain dispersion reduction schemes

The finite-difference-time-domain (FDTD), although recognized as a flexible, robust and simple to implement method for solving complex electromagnetic problems, is subject to numerical dispersion errors. In addition to the traditional ways for reducing dispersion, i.e., increasing sampling rate and using higher order degrees of accuracy, a number of schemes have been proposed recently. In this ...

متن کامل

Three-dimensional Finite Difference-Time Domain Solution of Dirac Equation

The Dirac equation is solved using three-dimensional Finite DifferenceTime Domain (FDTD) method. Zitterbewegung and the dynamics of a well-localized electron are used as examples of FDTD application to the case of free electrons. PACS numbers: 03.65.Pm, 02.60.-x, 02.60.Lj § Correspondence should be addressed to Louisiana Tech University, PO Box 10348, Ruston, LA 71272, Tel: +1.318.257.3591, Fax...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Theories and Applications

سال: 2018

ISSN: 2549-7324,2549-7316

DOI: 10.20961/jphystheor-appl.v2i1.26352